首页 | 本学科首页   官方微博 | 高级检索  
     

基于多尺度张量分解的点云结构特征提取
引用本文:林洪彬,刘彬,张玉存. 基于多尺度张量分解的点云结构特征提取[J]. 中国机械工程, 2012, 0(15): 1833-1839
作者姓名:林洪彬  刘彬  张玉存
作者单位:燕山大学河北省测试计量技术与仪器重点实验室
基金项目:国家科技重大专项(2011ZX04002-101);河北省自然科学基金资助项目(E2012203002);河北省科学技术研究与发展计划资助项目(10212152);秦皇岛市科学技术研究与发展计划资助项目(201001A077);河北省重点实验室开放基金资助项目
摘    要:针对传统点云处理算法弱特征提取与抗噪声能力之间的矛盾,提出了一种基于多尺度张量分解的点云结构特征提取算法。首先,利用张量矩阵奇异值分解进行采样点特征显著性编码;然后,将法向(切向)一致性测度与罗曼诺夫斯基准则相结合求取采样点最优邻域,以提高采样点特征识别的可靠性;最后,利用最小生成森林进行特征点遍历,构建点云结构特征曲线。实验结果表明,该算法可以实现复杂点云结构特征的有效识别。

关 键 词:多尺度分析  张量分解  点云  特征提取

Structural Feature Extraction from Point Clouds Based on Multi-scale Tensor Decomposition
Lin Hongbin Liu Bin Zhang Yucun. Structural Feature Extraction from Point Clouds Based on Multi-scale Tensor Decomposition[J]. China Mechanical Engineering, 2012, 0(15): 1833-1839
Authors:Lin Hongbin Liu Bin Zhang Yucun
Affiliation:Lin Hongbin Liu Bin Zhang Yucun Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Yanshan University,Qinhuangdao,Hebei,066004
Abstract:To solve the conflicts between the ability of weak feature extraction and noise resistency of traditional algorithms,a new feature extraction algorithm was proposed based on multi-scale tensor decomposition.Firstly,feature saliency encoding was defined based on the singular value decomposition of tensor matrix.Secondly,normal(tangential) consistent measure was constructed and used to determine the maxmuim scale combined with Romanovskii criterion.The reliability of the feature reconizing algorithm is improved.Finaly,the feature lines were constructed using minimal spanning forest.Expremental results reveal the weak feature extraction and noise resistency abilities of the method.
Keywords:multi-scale analysis  tensor decomposition  point cloud  feature extraction
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号