首页 | 本学科首页   官方微博 | 高级检索  
     


The dependence of the fracture toughness of mi steel on temperature and crack velocity
Authors:S J Burns  Z J Bilek
Affiliation:(1) Department of Mechanical and Aerospace Sciences, University of Rochester, 14627 Rochester, N. Y.;(2) Institute of Physical Metallurgy, Czechoslovak Academy of Sciences, Brno, Czechoslovakia
Abstract:The dependence of the dynamic plane-strain fracture toughness,K Id, on temperature and crack velocity was measured for propagating cracks in 1020 steel. The dynamics of crack propagation in double-cantilevered specimens was recorded using electroresistivity techniques. The fracture surface energy was found by comparing the crack propagation to solutions of crack motion in wedged-open cantilevered specimens. TheKId behavior was investigated over a range of temperatures from —196° to —50°C and crack velocities of 3 × 10-3 to 5 × 10-2 of √E/p. The rate and temperature dependence ofK Id over the range ofT and υc investigated is well described by:1/K ld 2= υ0 are experimental constants. A dynamic value ofK Id was 70 pct ofK Ic at the same temperature, although in the temperature and crack velocity range investigated the specific fracture surface energy varies by a factor of 6. The temperatureT T =B/A in(υ oc) for which1/K Id 2 = 0 is similar to Charpy impact transition temperature values whenυ c = 3 × 10-3√.E/p. If the plane-strain stress condition could be maintained, thenT T would define a brittle-ductile transition temperature for dynamic plane-strain fracture toughness. The constantsA andB are interpreted by understanding the plastic energy dissipated by a moving crack. Formerly with Brown University, Providence, R. I.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号