首页 | 本学科首页   官方微博 | 高级检索  
     


Multi-oriented scene text detection in video based on wavelet and angle projection boundary growing
Authors:Palaiahnakote Shivakumara  Anjan Dutta  Chew Lim Tan  Umapada Pal
Affiliation:1. Multimedia Unit, Department of Computer Systems and Information Technology, Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia
2. Computer Vision and Pattern Recognition Unit, Indian Statistical Institute, Kolkata, India
3. School of Computing, National University of Singapore, Singapore, Singapore
Abstract:In this paper, we address two complex issues: 1) Text frame classification and 2) Multi-oriented text detection in video text frame. We first divide a video frame into 16 blocks and propose a combination of wavelet and median-moments with k-means clustering at the block level to identify probable text blocks. For each probable text block, the method applies the same combination of feature with k-means clustering over a sliding window running through the blocks to identify potential text candidates. We introduce a new idea of symmetry on text candidates in each block based on the observation that pixel distribution in text exhibits a symmetric pattern. The method integrates all blocks containing text candidates in the frame and then all text candidates are mapped on to a Sobel edge map of the original frame to obtain text representatives. To tackle the multi-orientation problem, we present a new method called Angle Projection Boundary Growing (APBG) which is an iterative algorithm and works based on a nearest neighbor concept. APBG is then applied on the text representatives to fix the bounding box for multi-oriented text lines in the video frame. Directional information is used to eliminate false positives. Experimental results on a variety of datasets such as non-horizontal, horizontal, publicly available data (Hua’s data) and ICDAR-03 competition data (camera images) show that the proposed method outperforms existing methods proposed for video and the state of the art methods for scene text as well.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号