首页 | 本学科首页   官方微博 | 高级检索  
     

基于时态数据库的Web数据周期规律的采掘
引用本文:唐常杰,于中华,游志胜,张天庆,杨璐. 基于时态数据库的Web数据周期规律的采掘[J]. 计算机学报, 2000, 23(1): 52-59
作者姓名:唐常杰  于中华  游志胜  张天庆  杨璐
作者单位:四川大学计算机系,成都,610064
基金项目:国家自然科学基金!( 69773 0 5 1)
摘    要:拟周期性能描述对象在生命周期中重复性的趋势和走向,并能忽略时间轴上不规则的伸缩和幅度上的干扰。该文以基于Hbase分史制的Web数据拟周期采掘任务为背景,提出了属性趋势、趋势惯量和峰谷链、抗干扰的惯性趋势算法和峰谷算法,对拟周期采掘给出一种解决方法,通过在一组地震数据上的采掘测试表明,算法有实用价值和可接受的效率。

关 键 词:Web知识发现 拟周期 时态数据库 数据采掘
修稿时间:1998-07-15

Mine the Quasi-Periodicity from Web Data
TANG Chang-Jie,YU Zhong-Hua,YOU Zhi-Seng,ZHANG Tian-Qing,YANG Lu. Mine the Quasi-Periodicity from Web Data[J]. Chinese Journal of Computers, 2000, 23(1): 52-59
Authors:TANG Chang-Jie  YU Zhong-Hua  YOU Zhi-Seng  ZHANG Tian-Qing  YANG Lu
Abstract:The quasi periodicity describes the repeated behavior of specific objects while allowing uneven stretch or shrink on time axis, limited noises, and inflation /deflation of attribute values. To discover quasi periodicity from Web data, this work proposes the method to collect information from web sites. and the concepts of attribute tendency, tendency inertia and peak valley chain, as well as the anti noise algorithm with inertia, and peak valley algorithm, The article gives a solution to the problem of small noise and uneven stretched time axis in mining of quasi periodicity. The testing on a group of earthquake data shows that the method is useful and efficient.
Keywords:Web KDD  quasi periodicity  temporal database  attribute tendency  tendency inertia
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号