首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of thermal cycling on the growth of intermetallic compounds at the Sn-Zn-Bi-In-P lead-free solder/Cu interface
Authors:Guohai Chen  Xiaoyan Li  Jusheng Ma
Affiliation:(1) Department of Materials Science and Engineering, Tsinghua University, 100084 Beijing, China;(2) Datang Mobile Communications Equipment Co., Ltd., Beijing, China
Abstract:The low-temperature Sn-9Zn-1.5Bi-0.5In-0.01P lead-free solder alloy is used to investigate the intermetallic compounds (IMCs) formed between solder and Cu substrates during thermal cycling. Metallographic observation, scanning electron microscopy, transmission electron microscopy, and electron diffraction analysis are used to study the IMCs. The γ-Cu5Zn8 IMC is found at the Sn-9Zn-1.5Bi-0.5In-0.01P/Cu interface. The IMC grows slowly during thermal cycling. The fatigue life of the Sn-9Zn-1.5Bi-0.5In-0.01P solder joint is longer than that of Pb-Sn eutectic solder joint because the IMC thickness of the latter is much greater than that of the former. Thermodynamic and diffusivity calculations can explain the formation of γ-Cu5Zn8 instead of Cu-Sn IMCs. The growth of IMC layer is caused by the diffusion of Cu and Zn elements. The diffusion coefficient of Zn in the Cu5Zn8 layer is determined to be 1.10×10−12 cm2/sec. A Zn-rich layer is found at the interface, which can prevent the formation of the more brittle Cu-Sn IMCs, slow down the growth of the IMC layer, and consequently enhance the fatigue life of the solder joint.
Keywords:Lead-free solder  thermal cycling  intermetallic compounds (IMC)  diffusion
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号