首页 | 本学科首页   官方微博 | 高级检索  
     


Creep behaviour of AA 6061 metal matrix composite alloy and AA 6061
Abstract:Abstract

The tensile creep properties of a pure AA 6061 matrix and an AA 6061 matrix reinforced with 22% of irregularly shaped Al2O3 particles (metal matrix composite) are presented for a temperature of 573 K and initial stresses between 15 and 70 MPa (where 70 MPa is about one-half of the yield stress). The metal matrix composite (MMC) was fabricated by a stir casting process and both materials were extruded. All the specimens were overaged before testing. The MMC exhibits a higher secondary creep rate for the whole range of loads. A stress exponent of n ≈ 1 for stresses from 15 to 25 MPa for the unreinforced material indicates the dominating diffusional creep mechanism. A stress exponent of n ≈ 3 is found from 25 to 50 MPa concluding dominating dislocation creep for the unreinforced material. This mechanism is found to be dominating for the MMC from as low as 15 MPa to 50 MPa (n ≈ 3). Although the secondary creep rate of the reinforced samples is higher than that of the unreinforced, the exposure time is longer for the MMC at stress levels below 20 MPa. The transition between the secondary and the tertiary creep stage occurs earlier in the unreinforced material. Thus, the 1% creep limit of the unreinforced alloy is reached only in the tertiary creep stage, whereas it can be applied as a conservative design criterion for the composite in the whole stress range. Furthermore, the MMC promises at low stress levels higher creep lifetime than the unreinforced alloy. Creep damage in the tertiary stage of the MMC was found to be as a result of void nucleation resulting in particle decohesion from the matrix. Relatively high tertiary creep strains are produced by necking of the unreinforced samples.
Keywords:DUPLEX STAINLESS STEEL  2101  PRECIPITATION  CR2N
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号