首页 | 本学科首页   官方微博 | 高级检索  
     


Regulating Steric Hindrance in Redox-Active Porous Organic Frameworks Achieves Enhanced Sodium Storage Performance
Authors:Yilin Shan  Yanyan He  Na Yang  Xiang Zhu  Honglai Liu  Hao Jiang  Chunzhong Li
Abstract:The development of novel redox-active polymers for sustainable sodium ion batteries (SIBs) has captured growing attention, but battery performance has been significantly limited by poor reversible specific capacities, where the majority of aromatic C6-benzene linkages are redox inactive. Here, a simple, yet efficient approach to improve sodium (Na) storage on these C6-benzene rings within a porous polymeric framework by rationally regulating their steric hindrance is reported. Decreasing intrinsic hindrance affords a significant improvement in redox reaction kinetics within the porous architecture, thereby facilitating the acceptance of Na ions on these functionalized benzene rings and boosting the SIB performance. As a result, the modulate porous framework exhibits an exceptional battery capacity of 376 mAh g?1 after 1000 cycles at 1.0 A g?1, which is ≈1.5 times larger than that of the pristine framework. Furthermore, the performance can reach as high as 510 mAh g?1 at 0.1 A g?1, comparable to that of the best-performing polymeric electrodes. The simple modulation approach not only enables Na storage modulation on functionalized C6-benzene rings, but also simultaneously provides a means to extend the understanding of the structure-property relationship and facilitate new possibilities for organic SIBs.
Keywords:C6-benzene ring activation  fast reaction kinetics  porous organic frameworks  sodium-ion batteries  steric hindrance modulation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号