首页 | 本学科首页   官方微博 | 高级检索  
     


Modelling and determination of dynamic elastic modulus of magnesium based metal matrix composites
Abstract:Abstract

The aim of the present study was to determine the elastic modulus of magnesium based composites containing different volume fractions of SiC particulate using an innovative suspended beam type impact based technique. This applies classical vibration theory, which relates the resonant frequency of the test specimens to the geometry and material properties of the metal matrix composites. The elastic modulus values were determined from the funda mental resonant frequency obtained from the experiment and density measurements. In addition, a finite element model was proposed for determining the dynamic elastic modulus of MMCs with different SiC reinforcement content using the first natural frequency corresponding to the flexural mode. The elastic modulus values obtained from the finite element model were in close agreement with the values obtained from the impact based experiments and in better agreement than those from theoretical methods such as the shear lag, Eshelby, and Halpin–Tsai models.
Keywords:LF6 ALUMINIUM ALLOY  PROBABILITY DESIGN SYSTEM  THERMOPHYSICAL PARAMETERS  ANNEALING
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号