首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of inverted pressurisation profile on deformation characteristics of 5083 aluminium alloy during superplastic forming
Abstract:Abstract

Decreasing the cycle time for superplastic forming of a commercially available superplastic 5083 aluminium alloy has been studied in the present work by use of an inverted pressurisation profile. A right cylindrical cup with a depth/ diameter ratio of 0·5 could be superplastically gas pressure formed in less than 100 s. The deformation behaviour was similar to that of constant strain forming during the free bulging stage. In this stage, a stress state gradient from the pole to the edge of the formed dome was observed. Plasticity controlled growth of cavities was thought to be the mechanism for the increase of cavity volume fraction during forming. After the centre point of the deformed sheet touched the die surface, the metal flow pattern was found to be different from that of the traditional approach. The minimum thickness was not located at around the bottom corner of the cylindrical cup rather it was located ~ 7.5 mm away from the bottom centre of the cup with radius 20 mm. Significant cavity nucleation and coalescence caused higher cavity growth rates at large strains, owing to the continuous increase in strain rate resulting from the imposed pressurisation profile.
Keywords:SLOPING PLATE  WAVELIKE  SEMISOLID  MICROSTRUCTURE  PROPERTY
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号