Abstract: | In this paper, an ensemble form of the semi-supervised Fisher Discriminant Analysis (FDA) model is developed for fault classification in industrial processes. This method uses the K Nearest Neighbor (KNN) algorithm to merge the metric level outputs, which are obtained by the sub-classifiers in the ensemble model, to get the final classification result. An adaptive form is further proposed to improve the classification performance by putting forward to a new method of weight adjustment. While semi-supervised learning can generate a better model by exploiting additional information contained in unlabeled data, ensemble learning achieves the promotion of algorithm robustness by integrating a series of weak learners. In addition, the property of diversity in ensemble learning can be boosted by incorporating different unlabeled data to different weak learners. Therefore, the combination of those two methods can achieve great generalization for the fault classification model. The performances of two proposed methods are evaluated through an industrial benchmark process. |