首页 | 本学科首页   官方微博 | 高级检索  
     


Finite-time extended dissipative control for fuzzy systems with nonlinear perturbations via sampled-data and quantized controller
Abstract:This paper investigates the problem of finite-time extended dissipative control for T–S fuzzy time-varying delay systems with nonlinear perturbations via sampled-data and quantized controller. The definition of finite-time bounded mixed extended dissipative of fuzzy systems is first proposed. Based on the constructed Lyapunov–Krasovskii functional(LKF) and Peng–Parks integral inequality, some sufficient conditions are obtained in the form of linear matrix inequalities(LMIs), which are less conservative than other papers. By combining the input delay approach and dynamic quantizer, the sampled-data and quantized controller is designed to guarantee that the T–S fuzzy system is finite-time bounded mixed extended dissipative. Finally, some numerical examples and practical examples are presented to verify the feasibility and effectiveness of the proposed methods.
Keywords:T–S fuzzy systems  Time-varying delay  Sampled-data  Quantization  CE 150 helicopter model  Nonlinear ship steering system
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号