首页 | 本学科首页   官方微博 | 高级检索  
     

流体动压轴承-转子动力系统的分岔和混沌
引用本文:吕延军,张永芳,姜明,方英武,乔卫东,李旗,杨世强. 流体动压轴承-转子动力系统的分岔和混沌[J]. 润滑与密封, 2007, 32(1): 43-47,151
作者姓名:吕延军  张永芳  姜明  方英武  乔卫东  李旗  杨世强
作者单位:西安理工大学机械与精密仪器工程学院,陕西西安,710048;西北工业大学电子信息学院,陕西西安,710072;空军工程大学电讯工程学院,陕西西安,710077
基金项目:西安理工大学校科研和教改项目
摘    要:运用非线性动力学现代理论对一流体动压轴承一柔性转子非线性动力系统进行研究。以转速作为系统控制参数,将预估.校正机制、Poincar6映射和Newton打靶法相结合形成一种周期解预测跟踪算法,运用该方法研究了系统的非线性不平衡周期响应及其分岔点;运用Floquet稳定性分岔理论研究了系统周期响应的稳定性和分岔形式;运用FFT、功率谱、Lyapunov指数谱分析了系统响应的瞬态混沌现象。数值结果展现了系统具有周期、拟周期、多解共存、跳跃、瞬态混沌等丰富复杂的非线性现象。

关 键 词:油润滑  非线性  轴承-转子系统  分岔  瞬态混沌
文章编号:0254-0150(2007)1-043-5
修稿时间:2006-02-06

Bifurcation and Chaos of Hydrodynamic Bearing-Rotor Dynamical System
Lu Yanjun,Zhang Yongfang,Jiang Ming,Fang Yingwu,Qiao Weidong,Li Qi,Yang Shiqiang. Bifurcation and Chaos of Hydrodynamic Bearing-Rotor Dynamical System[J]. Lubrication Engineering, 2007, 32(1): 43-47,151
Authors:Lu Yanjun  Zhang Yongfang  Jiang Ming  Fang Yingwu  Qiao Weidong  Li Qi  Yang Shiqiang
Abstract:A dynamical model of nonlinear hydrodynamic bearing-flexible rotor system was analyzed by applying modern nonlinear dynamics theory. A method consisting of predictor-corrector mechanism, Poincar6 map and Newton shooting method was proposed to calculate bifurcation points and nonlinear unbalance periodic responses, when rotational speed is assigned as the control parameter of the system. The stability and the type of the bifurcation of the periodic motions were determined by Floquet theory. Transient chaotic motion was analyzed with FFF, power spectrum and Lyapunov exponent spectrum. The numerical results reveal periodic, quasi-periodic, co-existing solutions, jumped,transient chaos of rich and complex nonlinear behaviors of the system.
Keywords:oil-lubrication    nonlinear   bearing-rotor system    bifurcation    transient chaos
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号