首页 | 本学科首页   官方微博 | 高级检索  
     


Novel Mechanism by a Bis-Pyridinium Fullerene Derivative to Induce Apoptosis by Enhancing the MEK-ERK Pathway in a Reactive Oxygen Species-Independent Manner in BCR-ABL-Positive Chronic Myeloid Leukemia-Derived K562 Cells
Authors:Kazuya Sumi  Kenji Tago  Yosuke Nakazawa  Kyoko Takahashi  Tomoyuki Ohe  Tadahiko Mashino  Megumi Funakoshi-Tago
Affiliation:1.Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; (K.S.); (Y.N.);2.Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, Shimotsuke 321-0498, Japan;3.Division of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; (K.T.); (T.O.); (T.M.)
Abstract:In the treatment of breakpoint cluster region-Abelson (BCR-ABL)-positive chronic myeloid leukemia (CML) using BCR-ABL inhibitors, the appearance of a gatekeeper mutation (T315I) in BCR-ABL is a serious issue. Therefore, the development of novel drugs that overcome acquired resistance to BCR-ABL inhibitors by CML cells is required. We previously demonstrated that a bis-pyridinium fullerene derivative (BPF) induced apoptosis in human chronic myeloid leukemia (CML)-derived K562 cells partially through the generation of reactive oxygen species (ROS). We herein show that BPF enhanced the activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase-extracellular signal-regulated kinase (MEK-ERK) pathway in a ROS-independent manner. BPF-induced apoptosis was attenuated by trametinib, suggesting the functional involvement of the MEK-ERK pathway in apoptosis in K562 cells. In addition, the constitutive activation of the MEK-ERK pathway by the enforced expression of the BRAFV600E mutant significantly increased the sensitivity of K562 cells to BPF. These results confirmed for the first time that BPF induces apoptosis in K562 cells through dual pathways—ROS production and the activation of the MEK-ERK pathway. Furthermore, BPF induced cell death in transformed Ba/F3 cells expressing not only BCR-ABL but also T315I mutant through the activation of the MEK-ERK pathway. These results indicate that BPF is as an effective CML drug that overcomes resistance to BCR-ABL inhibitors.
Keywords:bis-pyridinium fullerene derivative (BPF)   BCR-ABL   chronic myeloid leukemia (CML)   MEK-ERK pathway   reactive oxygen species (ROS)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号