首页 | 本学科首页   官方微博 | 高级检索  
     


The influence of hypoxia and pH on aminolaevulinic acid-induced photodynamic therapy in bladder cancer cells in vitro
Authors:L Wyld  MW Reed  NJ Brown
Affiliation:The Department of Surgical and Anaesthetic Sciences, Sheffield University, Royal Hallamshire Hospital, UK.
Abstract:Photodynamic therapy (PDT) is a cancer treatment based on the interaction of light and a photosensitizing chemical. The photosensitizer protoporphyrin IX (PpIX) is generated via the haem biosynthetic pathway after administration of aminolaevulinic acid (ALA). The cellular microenvironment of tumours is hypoxic and acidotic relative to normal tissue, which may influence PpIX generation and compromise PDT efficacy. This study used bladder cancer cells, incubated with ALA at various oxygen tensions and H+ ion concentrations, and assessed the effects on PpIX generation and PDT sensitivity. PpIX production was reduced at 0%, 2.5% (19 mmHg) and 5% (38 mmHg) oxygen compared with that at 21% (160 mmHg) oxygen (0.15, 0.28 and 0.398 ng microg(-1) protein compared with 0.68 ng microg(-1) respectively; P < 0.05). The response to PDT was abolished by hypoxia, as a result of both reduced PpIX synthesis and reduced PDT toxicity. PpIX production was greater at pH 7.0 and 6.5 (0.75 and 0.66 ng microg(-1)) compared with that at pH 7.4 and 5.5 (0.41 and 0.55 ng microg(-1) respectively). PDT cytotoxicity was enhanced at lower pH values. These results suggest that ALA-induced PDT may be inhibited by hypoxia due to reduced intrinsic PpIX synthesis. Acidosis may slightly enhance the efficacy of ALA-induced PDT.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号