首页 | 本学科首页   官方微博 | 高级检索  
     

TiO2(B)表面修饰富锂层状氧化物Li(Li0.17Ni0.2Mn0.58Co0.05)O2正极材料
引用本文:刘沁,袁文,高学平.TiO2(B)表面修饰富锂层状氧化物Li(Li0.17Ni0.2Mn0.58Co0.05)O2正极材料[J].无机材料学报,2014,29(12):1257-1264.
作者姓名:刘沁  袁文  高学平
作者单位:(南开大学 新能源材料化学研究所, 天津 300071)
基金项目:国家自然科学基金(51272108);高等学校博士学科点专项基金(20120031130002);National Natural Science Foundation of China(51272108);Specialized Research Fund for the Doctoral Program of Higher Education of China (20120031130002)
摘    要:采用喷雾干燥法和沉淀法, 制备了表面修饰TiO2(B) (2wt%、4wt%、6wt%和8wt%)的富锂层状氧化物Li(Li0.17Ni0.2Mn0.58Co0.05)O2正极材料。X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)结构测试分析结果表明, 修饰TiO2(B)后样品的体相结构仍然保持初始样品的层状结构, 仅氧化物颗粒表面附着有少量TiO2(B)纳米晶。示差扫描量热测试(DSC)表明, 与初始样品比较, 修饰TiO2(B)后样品的热稳定性得到明显改善。在2.0~4.8 V范围内进行恒流电化学性能测试。研究显示, 在0.1C(1C=300 mA/g)倍率下, 修饰4wt%TiO2(B)样品的首次放电比容量可达296.4 mAh/g, 首次库伦效率则由初始样品的77.7%提升到修饰TiO2(B)后样品的84.3%, 100周循环后电极容量保持率由初始样品的69.5%提升到修饰TiO2(B)后样品的80.2%。即使在阶梯倍率的2C倍率下, 修饰4wt%TiO2(B)的样品仍具有较高的电化学容量(166.5 mAh/g)。以上研究结果表明, 表面修饰TiO2(B)纳米晶可以显著改善富锂层状氧化物Li(Li0.17Ni0.2Mn0.58Co0.05)O2的热稳定性和电化学性能。

关 键 词:锂离子电池  正极  富锂层状氧化物  表面修饰  TiO2(B)  
收稿时间:2014-01-22
修稿时间:2014-04-28

Surface Modification of Li-rich Layered Li(Li0.17Ni0.2Mn0.58Co0.05)O2 Oxide with TiO2(B) as the Cathode for Lithium-ion Batteries
LIU Qin,YUAN Wen,GAO Xue-Ping.Surface Modification of Li-rich Layered Li(Li0.17Ni0.2Mn0.58Co0.05)O2 Oxide with TiO2(B) as the Cathode for Lithium-ion Batteries[J].Journal of Inorganic Materials,2014,29(12):1257-1264.
Authors:LIU Qin  YUAN Wen  GAO Xue-Ping
Affiliation:(Institute of New Energy Material Chemistry, Nankai University, Tianjin 300071, China)
Abstract:The Li-rich layered Li(Li0.17Ni0.2Mn0.58Co0.05)O2 oxide was prepared by a spray-drying method. Subsequently, the surface modification with TiO2(B) nanocrystallites (2wt%, 4wt%, 6wt%, 8wt%) was introduced into the Li-rich layered Li(Li0.17Ni0.2Mn0.58Co0.05)O2 oxide by precipitation method. It is demonstrated that there is no obvious change in the crystallographic structure of the Li-rich layered Li(Li0.17Ni0.2Mn0.58Co0.05)O2 oxide based on the analysis of XRD, SEM and TEM, while only the surface of the oxide is modified with TiO2(B) nanocrystallites. It is indicated from DSC curves that the thermal stability of Li-rich layered oxide is obviously improved by the surface modification with TiO2(B) nanocrystallites. Correspondingly, the large discharge capacity of 296.4 mAh/g and high coulombic efficiency of 84.5% are obtained at 0.1C rate (1C=300 mA/g) in the first cycle for the Li-rich layered oxide after the surface modification with TiO2(B) nanocrystallites (4wt%). Moreover, the capacity retention after 100 cycles is increased from 69.5% for the pristine sample to 80.2% for the TiO2(B)-modified sample. Even at 2C rate, the large discharge capacity of 166.5 mAh/g is still obtained for the TiO2(B)-modified sample. Apparently, it is demonstrated from the above results that the surface modification with TiO2(B) nanocrystallites can improve the thermal stability and electrochemical performance of the Li-rich layered Li(Li0.17Ni0.2Mn0.58Co0.05)O2 oxide.
Keywords:lithium ion battery  cathode  Li-rich layered oxide  surface modification  TiO2(B)  
本文献已被 CNKI 等数据库收录!
点击此处可从《无机材料学报》浏览原始摘要信息
点击此处可从《无机材料学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号