首页 | 本学科首页   官方微博 | 高级检索  
     


Evaluation of Thermal and Mechanical Behavior of CuNiCoZnAl High-Entropy Alloy Fabricated Using Mechanical Alloying and Spark Plasma Sintering
Authors:Salemi  F  Karimzadeh  F  Abbasi  M H
Affiliation:1.Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
;
Abstract:

Thermal behavior investigation of CuNiCoZnAl high-entropy alloy powder produced by mechanical alloying indicated that a FCC single-phase solid solution transformed into two new phases at 500 °C. Despite this phase transformation, no indication of intermetallic compounds or amorphous phases was detected. Heat treatment of the high-entropy alloy was then carried out for 2 hours, and the nanocrystalline structure of heat-treated milled powder was retained up to 1000 °C. Besides, grain growth of CuNiCoZnAl high-entropy alloy powder at high homologous temperatures (> 0.6 Tm) was studied, and sluggish grain growth of the powder was observed clearly. Consolidation of the alloy powder was performed by spark plasma sintering at 800 °C, and a sample with porosity of 6.87 pct and density of 7.32 g cm?3 was achieved. Elastic moduli, Vickers microhardness, and fracture toughness of the bulk sample were measured as 186 ± 17 GPa, 599 ± 31 HV, and 4.45 MPa m0.5, respectively. The evaluation of wear behavior indicated that the dominant wear mechanism was adhesive wear. Moreover, tribochemical wear (oxidation) was found to be the minor wear mechanism. The present study revealed that CuNiCoZnAl high-entropy alloy has the potential to be used in many applications that high hardness and low elastic moduli are favorable.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号