首页 | 本学科首页   官方微博 | 高级检索  
     

双树复小波算法在滚动轴承故障信号特征提取中的应用
引用本文:张洋,侯云海,王立新. 双树复小波算法在滚动轴承故障信号特征提取中的应用[J]. 机床与液压, 2021, 49(22): 206-211
作者姓名:张洋  侯云海  王立新
作者单位:长春汽车工业高等专科学校机械工程学院,吉林长春130013;长春工业大学电气与电子工程学院,吉林长春130012;长春汽车工业高等专科学校电气工程学院,吉林长春, 130013
基金项目:吉林省高等教育学会基金项目(JGJX2019D611)
摘    要:现有滚动轴承故障特征提取算法的性能会随着故障集规模扩大而出现衰减。针对故障信号间存在的干扰和模态混叠等问题,提出一种基于双树复小波的特征提取算法。双树复小波结构包含两个独立的滤波器组,在含噪混合信号的分解和重构中形成互补关系,提升信号采样的平稳性;优化双树复小波滤波器组的结构,降低故障信号平移敏感性,利用门限阈值处理高频小波系数,达到降噪的目的,并基于时间序列样本熵提取子带信号的能量特征。实验结果显示:提出的算法能够准确提取滚动轴承各部分的故障特征信息,算法的在线故障识别率达到99.56%。

关 键 词:双树复小波  滚动轴承  滤波器组  特征信息

Application of Dual Tree Complex Wavelet Algorithm in Feature Extraction of Rolling Bearing Fault Signal
Abstract:The performance of existing rolling bearing fault feature extraction algorithms would be attenuated with the expansion of fault set.Aiming at the problems of interference and mode aliasing between fault signals,a feature extraction algorithm based on dual tree complex wavelet was proposed.Dual tree complex wavelet structure contained two independent filter banks,which formed a complementary relationship in the decomposition and reconstruction of noisy mixed signal,to improve the smoothness of signal sampling;the structure of dual tree complex wavelet filter bank was optimized to reduce the translation sensitivity of fault signal,threshold was used to process high-frequency wavelet coefficients to achieve the purpose of noise reduction,and the energy characteristics of the subband signal was extracted based on time series sample entropy.The experimental results show that the proposed algorithm can be used to accurately extract the fault feature information of each part of the rolling bearing,and the online fault recognition rate of the algorithm reaches 99.56%.
Keywords:Dual tree complex wavelet  Rolling bearing  Filter bank  Feature information
本文献已被 万方数据 等数据库收录!
点击此处可从《机床与液压》浏览原始摘要信息
点击此处可从《机床与液压》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号