首页 | 本学科首页   官方微博 | 高级检索  
     


Horizontal Line-of-Sight Turbulence Over Near-Ground Paths and Implications for Adaptive Optics Corrections in Laser Communications
Authors:Levine B M  Martinsen E A  Wirth A  Jankevics A  Toledo-Quinones M  Landers F  Bruno T L
Abstract:Atmospheric turbulence over long horizontal paths perturbs phase and can also cause severe intensity scintillation in the pupil of an optical communications receiver, which limits the data rate over which intensity-based modulation schemes can operate. The feasibility of using low-order adaptive optics by applying phase-only corrections over horizontal propagation paths is investigated. A Shack-Hartmann wave-front sensor was built and data were gathered on paths 1 m above ground and between a 1- and 2.5-km range. Both intensity fluctuations and optical path fluctuation statistics were gathered within a single frame, and the wave-front reconstructor was modified to allow for scintillated data. The temporal power spectral density for various Zernike polynomial modes was used to determine the effects of the expected corrections by adaptive optics. The slopes of the inertial subrange of turbulence were found to be less than predicted by Kolmogorov theory with an infinite outer scale, and the distribution of variance explained by increasing order was also found to be different. Statistical analysis of these data in the 1-km range indicates that at communications wavelengths of 1.3 mum, a significant improvement in transmitted beam quality could be expected most of the time, to a performance of 10% Strehl ratio or better.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号