首页 | 本学科首页   官方微博 | 高级检索  
     


Strength and fatigue properties of three-step sintered dense nanocrystal hydroxyapatite bioceramics
Authors:Wen-Guang GUO  Zhi-Ye QIU  Han CUI  Chang-Ming WANG  Xiao-Jun ZHANG  In-Seop LEE  Yu-Qi DONG  Fu-Zhai CUI
Affiliation:1. School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; 2. Beijing Allgens Medical Science and Technology Co., Ltd., Beijing 100085, China; 3. Institute of Natural Science and Atomic-scale Surface Science Research Center, Yonsei University, Seoul 120-749, Korea; 4. Department of Orthopedics, Renji Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
Abstract:Dense hydroxyapatite (HA) ceramic is a promising material for hard tissue repair due to its unique physical properties and biologic properties. However, the brittleness and low compressive strength of traditional HA ceramics limited their applications, because previous sintering methods produced HA ceramics with crystal sizes greater than nanometer range. In this study, nano-sized HA powder was employed to fabricate dense nanocrystal HA ceramic by high pressure molding, and followed by a three-step sintering process. The phase composition, microstructure, crystal dimension and crystal shape of the sintered ceramic were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Mechanical properties of the HA ceramic were tested, and cytocompatibility was evaluated. The phase of the sintered ceramic was pure HA, and the crystal size was about 200 nm. The compressive strength and elastic modulus of the HA ceramic were comparable to human cortical bone, especially the good fatigue strength overcame brittleness of traditional sintered HA ceramics. Cell attachment experiment also demonstrated that the ceramics had a good cytocompatibility.
Keywords:nanocrystal hydroxyapatite ceramic  three-step sintering  mechanical property  fatigue strength  cytocompatibility  
点击此处可从《》浏览原始摘要信息
点击此处可从《》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号