首页 | 本学科首页   官方微博 | 高级检索  
     


On the great difficulty of intercalating lithium with a second element into graphite
Authors:  bastien Pruvost,Claire Hé  rold,Albert Hé  rold
Affiliation:a Laboratoire de Chimie du Solide Minéral, UMR 7555, Université Henri Poincaré Nancy I, B.P. 239, 54506 Vandœuvre-lès-Nancy Cedex, France
b Ecole Européenne d’Ingénieurs en Génie des Matériaux, Institut National Polytechnique de Lorraine, 6, rue Bastien Lepage, B.P. 630, 54010 Nancy, Cedex, France
Abstract:Lithium is able to intercalate into graphite leading to various binary graphite intercalation compounds, that are well defined by their stage. Concerning the ternaries, there is little literature on the subject. Thermodynamical and structural data, that differ largely from those of the other alkali metals, lead one to foresee some serious difficulties in synthesising such ternary compounds. Many experiments have attempted to synthesise ternary graphite intercalation compounds with lithium, using successively very electronegative elements, then fairly electronegative species and lastly electropositive metals. Numerous results, that are wholly negative, are described in this paper. The calcium-lithium system only allows one to prepare a novel intercalation compound, that is a first stage ternary phase exhibiting a large interplanar distance. This latter suggests that the intercalated sheets consist of several superimposed atomic layers. The synthesis of this ternary is not easy, because it needs reagents of very high purity. It possesses the brightness of metals and its strong hardness is very unusual among graphite intercalation compounds. On the other hand, the charge transfer between the graphene planes and the intercalated sheets, that just allows the intercalation, is especially high, and much higher than the LiC6 compound.
Keywords:A. Highly oriented graphite, Intercalation compounds   B. Intercalation   C. X-ray diffraction
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号