首页 | 本学科首页   官方微博 | 高级检索  
     


Catalytic Amination of Octanol for Synthesis of Trioctylamine and Catalyst Characterization
Authors:Yunling Li  Qiuxiao Li  Lifei Zhi  Minghui Zhang
Affiliation:(1) College of Chemistry and Chemical Engineering, Shanxi University, 34# Wenyuan Str., Taiyuan, 030001, Shanxi, People’s Republic of China;(2) China Research Institute of Daily Chemical Industry, Taiyuan, China
Abstract:

Abstract  

Synthesis of trioctylamine by the amination of octanol and ammonia under atmospheric pressure over an excellent Ni–Cu catalyst supported on diatomite is studied in this article. The key factor for the synthesis is the preparation of catalyst with a high activity and selectivity. The activity and selectivity can be adjusted by varying the Ni to Cu ratios. The optimum molar ratio of Ni to Cu was 1.25:1. For the catalyst with a Ni/Cu ratio of 1.25:1, the conversion of octanol and the selectivity of trioctylamine reached 100 and 97.3%, respectively, at 5 h. The reaction of dioctylamine with octanol was the rate-determining step for the formation of trioctylamine. The Physical properties of catalysts, such as particle size, Brunauer–Emmett–Teller (BET) surface area, valence state of catalyst elements, morphology and reduction properties of catalysts were investigated by using X-ray diffraction, nitrogen adsorption–desorption isotherms (BET), X-ray photoelectron spectroscopy, Transmission electron microscopy, and temperature programmed reduction, respectively. The reaction scheme of catalytic amination of octanol with ammonia was discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号