首页 | 本学科首页   官方微博 | 高级检索  
     

异相类Fenton催化剂降解废水中抗生素研究进展及发展趋势
作者姓名:邱述兴  韩星  张梅  郭敏
作者单位:北京科技大学冶金与生态工程学院,北京 100083
基金项目:国家自然科学基金资助项目;国家973资助项目
摘    要:水中抗生素具有成分复杂、毒性高和难于生物降解等特点,成为近些年水处理领域的研究热点。均相Fenton氧化技术(Fe2+/H2O2体系)因其反应快速、简单高效而备受青睐。而异相类Fenton氧化技术采用铁基固体催化剂代替液相Fe2+,能够有效减少含铁污泥的生成,同时拓宽反应的pH值范围,且催化剂可以回收利用,在近些年得到了快速发展,将其应用于抗生素的降解也取得了理想的效果。从异相类Fenton催化原理出发,综述了异相类Fenton催化剂降解抗生素的研究进展。基于异相类Fenton催化剂的核心问题,重点阐述了改善催化性能的方法、措施以及新的观点。针对异相类Fenton技术降解抗生素存在的问题提出了今后的发展方向。 

关 键 词:抗生素    水处理    Fenton氧化    异相类Fenton催化剂    催化性能
收稿时间:2020-10-29

Research progress and development trends in heterogeneous Fenton-like catalysts for degradation of antibiotics in wastewater
Authors:QIU Shu-xing  HAN Xing  ZHANG Mei  GUO Min
Affiliation:School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
Abstract:China is one of the major antibiotic producing and consuming countries in the world and demand for and output of antibiotics are increasing year by year. The wastewater produced during the production of antibiotics is of complex composition, high chemical oxygen demand, high concentrations of toxic and harmful substances and strong resistance to biodegradation. This is problematic for the process of pharmaceutical wastewater treatment. Additionally, due to the extensive use of antibiotics, a variety of antibiotics are constantly released into the environment, with adverse effects on aquatic organisms. Although antibiotic concentrations in wastewater are low, the accumulation of low-dose, long-duration antibiotics can lead to the development of drug-resistant strains that threaten human health and the entire ecosystem. Therefore, how to effectively remove antibiotic residues in water is an important challenge toward ensuring the safety of water quality, the environment, and ecology. Advanced oxidation technology (AOP), which has an extremely high oxidation potential, can generate hydroxyl radicals in the reaction process, and can degrade organic compounds rapidly without secondary pollution. Therefore, it exhibits clear advantages in the treatment of antibiotics in water. As a kind of AOP, homogeneous Fenton oxidation technology (Fe2+/H2O2 system) has attracted considerable attention owing to its rapid reaction, simplicity, and high degradation efficiency. Heterogeneous Fenton-like oxidation technology using an iron-based solid catalyst instead of Fe2+ ions can effectively reduce the formation of iron-containing sludge and broaden the pH reaction range to overcome the shortcomings of Homogeneous Fenton. Moreover, recycling of the catalyst has been developed rapidly in recent years and has achieved ideal results when applied to the degradation of antibiotics. In this paper, research progress in heterogeneous Fenton-like catalysts for degradation of antibiotics was reviewed. Based on the core issues of heterogeneous Fenton-like catalysts, the methods, measures, and new viewpoints for improving catalytic performance were expounded upon. Aiming at the problems of heterogeneous Fenton-like technology in degrading antibiotics, future development directions were presented. 
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《》浏览原始摘要信息
点击此处可从《》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号