首页 | 本学科首页   官方微博 | 高级检索  
     


Macrophage oxidative modification of low density lipoprotein occurs independently of its binding to the low density lipoprotein receptor
Authors:RK Tangirala  MJ Mol  D Steinberg
Affiliation:Department of Medicine, University of California, San Diego, La Jolla 92093-0682, USA.
Abstract:The oxidative modification of low density lipoproteins (LDL) by arterial wall cells is thought to contribute to atherogenesis. Monocyte/macrophages, among other arterial wall cells, oxidatively modify LDL to a form that is recognized by scavenger/oxidized LDL receptors. It has recently been suggested that LDL binding to the LDL receptor (B/E receptor) is essential for macrophage-mediated oxidation of LDL. In the present study, we compared the ability of resident peritoneal macrophages from LDL-R-deficient (LDLR-/-) mice to oxidize LDL with that of resident peritoneal macrophages from C57B6 mice. The LDLR-/- macrophages oxidized LDL at least as rapidly as did the C57B6 macrophages both in F-10 medium and in Dulbecco's modified Eagle's medium supplemented with 1 microM copper (DMEM-Cu2+). Studies were also conducted to examine the effect of preincubation of LDLR-/- and C57B6 macrophages with 10% lipoprotein-deficient serum (LPDS), which up-regulates LDL receptors, or with acetylated LDL (Ac-LDL), which increases cellular cholesterol and down-regulates LDL receptors. Preincubation with 10% LPDS had no significant effect on subsequent LDL oxidation by either type of cells in F10 medium, but the C57B6 cells did show a small (18%) but significant increase in LDL oxidation in DMEM-Cu2+. Preincubation with 50 micrograms/ml Ac-LDL in F10 medium had no effect on LDL oxidation by either LDLR-/- or C57B6 macrophages. Preincubation with 100 micrograms/ml Ac-LDL had no effect on subsequent LDL oxidation by C57B6 cells but, unexpectedly, caused a modest (26%) fall in LDL oxidation by the receptor-negative cells. Using DMEM-Cu2+ medium, preincubation with Ac-LDL reduced LDL oxidation substantially (50-66%) but the effect was just as great in LDL-R negative cells (59-66%) as in C57B6 cells (50-58%), suggesting that the effect is not due to changes in LDL receptor density. It may be related somehow to the Ac-LDL-induced increase in cell cholesterol content. The data demonstrate that the absence of LDL receptors does not reduce the ability of macrophages to oxidize LDL and that LDL binding to LDL receptors is not an essential requirement for macrophage oxidation of LDL.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号