首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling the Effect of Cistern Size,Soil Type,and Irrigation Scheduling on Rainwater Harvesting as a Stormwater Control Measure
Authors:Sa’d A. Shannak  Fouad H. Jaber  Bruce J. Lesikar
Affiliation:1. Biological and Agricultural Engineering Department, Texas A&M AgriLife Extension, 17360 Coit Road, Dallas, TX, 75252, USA
2. Kaselco LLC, 959 Highway 95 North, Shiner, TX, 77984, USA
Abstract:Urban stormwater runoff could have negative impacts on water resources and the environment. Rainwater Harvesting (RWH) can serve both as a stormwater control and water conservation measure. Cistern size and irrigation scheduling are two of the factors that directly impact the total runoff from a residential unit with a RWH system and the amount of potable water used for irrigation. The effectiveness of RWH was evaluated for four soil types; Sand, Sandy Loam, Loamy Sand, and Silty Clay, with a root zone of 15.2 cm using three irrigation scheduling methods (Evapotranspiration (ET)-based, soil moisture-based, and time-based), and five cistern sizes. Total runoff volumes and total supplemental potable water used were compared among the three irrigation scheduling systems and a control treatment without RWH. A model was developed to simulate the daily water balance for the treatments. Irrigation and runoff volumes were compared for the various scenarios. Silty clay soil resulted with 83 % more runoff than Sandy soil, while Sandy soil required on average 58 % more supplemental water than Silty Clay soil. On average, the 833 L cistern resulted with 41 % savings in water supply and 45 % reduction in total runoff. Results showed that the greatest volumes of runoff predicted were for the silty clay soil Control Treatment using a time-based irrigation scheduling method, while the least volumes calculated were for the sandy loam soil time-based irrigation scheduling treatment with 833 L cistern size. The greatest volumes of total supplemental water predicted were for sandy loam soil Control Treatment, while the least volumes were for silty clay soil ET-based irrigation scheduling treatment with 833 L cistern size. Regression equations were developed to allow for users to select a RWH cistern size based on the amount of water they want to save or runoff to reduce.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号