基于DenseNet分类的隧道裂缝检测研究 |
| |
引用本文: | 高新闻,李帅青,金邦洋. 基于DenseNet分类的隧道裂缝检测研究[J]. 计算机测量与控制, 2020, 28(8): 58-61 |
| |
作者姓名: | 高新闻 李帅青 金邦洋 |
| |
作者单位: | 上海大学机电工程与自动化学院,上海200444;上海大学上海城建(集团)公司建筑产业化研究中心,上海201400;上海大学机电工程与自动化学院,上海200444 |
| |
基金项目: | 上海市科技委员会项目(17DZ1204203),上海市科技委员会项目(18DZ1201204)。 |
| |
摘 要: | 针对隧道裂缝人工识别低效、检修不便以及隧道环境复杂多变、检测易受噪声干扰等问题,文中提出一种基于深度学习的裂缝检测算法。通过神经网络对原始图像进行非裂缝区域过滤,减少无关背景信息的干扰,同时在分割算法基础上通过多维分类器将误识别的裂缝区域剔除。实验结果表明,密集连接卷积网络(DenseNet)在裂缝分类中最高可达99.95%的准确率,有效提升了隧道裂缝自动检测精度。
|
关 键 词: | 裂缝检测 深度学习 DenseNet |
收稿时间: | 2020-01-04 |
修稿时间: | 2020-02-24 |
Study on Tunnel Crack Detection Based on DenseNet Classification |
| |
Abstract: | Aiming at the problems of inefficient manual detection of tunnel cracks, inconvenient maintenance, complicated and changeable tunnel environment, and susceptibility to noise interference, a crack detection algorithm based on deep learning is proposed. Non-crack areas are filtered through the neural network to reduce the interference of irrelevant background information. At the same time, based on the segmentation algorithm, mis-recognized crack areas are eliminated. Experimental results show that the DenseNet network can reach a maximum accuracy of 99.95% in crack classification, which effectively improves the accuracy of tunnel crack detection. |
| |
Keywords: | crack detection deep learning DenseNet |
本文献已被 万方数据 等数据库收录! |
| 点击此处可从《计算机测量与控制》浏览原始摘要信息 |
|
点击此处可从《计算机测量与控制》下载免费的PDF全文 |
|