首页 | 本学科首页   官方微博 | 高级检索  
     

碳纳米管@球形氮化碳核壳结构光催化剂的构筑及其性能
引用本文:贺凤婷,王帅军,刘贺峰,赵朝成,陈佳敏,吴兴阳,赵洪飞. 碳纳米管@球形氮化碳核壳结构光催化剂的构筑及其性能[J]. 石油学报(石油加工), 2019, 35(5): 830-838. DOI: 10.3969/j.issn.1001-8719.2019.05.002
作者姓名:贺凤婷  王帅军  刘贺峰  赵朝成  陈佳敏  吴兴阳  赵洪飞
作者单位:1中国石油大学(华东) 化学工程学院,山东 青岛 266580;2石油石化污染物控制与处理国家重点实验室,北京 102206;3环境保护部环境工程评估中心,北京 100012
基金项目:国家科技重大专项基金项目(2016ZX05040003)资助
摘    要:以二氰二胺和三聚氯氰为原料,以碳纳米管 (CNT)为核,采用溶剂热法成功制备了一系列不同CNT质量的可见光响应的碳纳米管@球形氮化碳 (CNT@CNMS) 核壳结构催化剂。采用X射线衍射光谱(XRD)、傅里叶变换红外(FT-IR)、透射电子显微镜(TEM)、紫外可见光谱(UV-vis)、X射线光电子能谱(XPS)、电化学阻抗(EIS)和光致发光光谱(PL)等分析方法对催化剂进行了表征。通过电化学表征计算出CNMS的价带与导带位置。结果表明,CNMS均匀的生长到管状CNT表面,形成CNT@CNMS核壳结构;制备的CNT@CNMS核壳催化剂比表面积增大,且可见光吸收性能明显增强。光催化性能试验表明,当CNT质量为20 mg时,制备的催化剂性能最高,反应120 min,4 - 硝基苯酚的降解率高达54.44%,其降解效果明显高于CNMS。该研究对于采用溶剂热法制备核壳结构基氮化碳催化剂治理油田废水中酚类污染物提供了理论基础。

关 键 词:核壳结构  碳纳米管@球形氮化碳  溶剂热法  球形氮化碳  碳纳米管  4-硝基苯酚  
收稿时间:2018-08-01

Construction of CNT@CNMS Core-Shell Structure Catalyst and Its Photocatalytic Degradation Properties
HE Fengting,WANG Shuaijun,LIU Hefeng,ZHAO Chaocheng,CHEN Jiamin,WU Xingyang,ZHAO Hongfei. Construction of CNT@CNMS Core-Shell Structure Catalyst and Its Photocatalytic Degradation Properties[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2019, 35(5): 830-838. DOI: 10.3969/j.issn.1001-8719.2019.05.002
Authors:HE Fengting  WANG Shuaijun  LIU Hefeng  ZHAO Chaocheng  CHEN Jiamin  WU Xingyang  ZHAO Hongfei
Affiliation:1College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China;2State Key Laboratory of Petroleum Pollution Control and Treatment, Beijing 102206, China;3Environmental Engineering Assessment Center of the Ministry of Environmental Protection, Beijing 100012, China
Abstract:A series of visible light-responsive carbon nanotubes@spherical carbon nitride (CNT@CNMS) core-shell catalysts with different CNT contents, were successfully synthesized by the solvothermal method using dicyandiamide and cyanuric chloride as raw materials and carbon nanotubes (CNT) as the core. The prepared photocatalyst was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscope (TEM), UV-vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), electrochemical impedance (EIS) and photoluminescence (PL) spectroscopy. The valence band (VB) and conduction band (CB) of CNMS have been calculated by electrochemical characterization.The results indicated that CNMS grows evenly on the surface of tubular CNTs to form CNT@CNMS core-shell structure. The prepared CNT@CNMS core-shell catalyst had a larger specific surface area and enhanced visible light absorption performance. Besides, the photocatalytic activity of CNT@CNMS core-shell catalysts was evaluated based on the degradation of 4-nitrophenol, and the optimal CNT content with the highest photocatalytic activity was determined to be 20 mg, and its degradation efficiency was 54.44% significantly higher than CNMS. This study provides a theoretical basis for the preparation of core-shell structured carbon nitride catalysts by solvothermal methods.
Keywords:core shell structure  carbon nanotubes@spherical carbon nitride  solvothermal method  spherical carbon nitride  carbon nanotubes  4-nitrophenol  
本文献已被 CNKI 等数据库收录!
点击此处可从《石油学报(石油加工)》浏览原始摘要信息
点击此处可从《石油学报(石油加工)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号