首页 | 本学科首页   官方微博 | 高级检索  
     


ICEAGE: Interactive Clustering and Exploration of Large and High-Dimensional Geodata
Authors:Diansheng Guo  Donna J. Peuquet  Mark Gahegan
Affiliation:(1) Department of Geography and GeoVISTA Center, Pennsylvania State University, 302 Walker Building, University Park, PA, 16802
Abstract:The unprecedented large size and high dimensionality of existing geographic datasets make the complex patterns that potentially lurk in the data hard to find. Clustering is one of the most important techniques for geographic knowledge discovery. However, existing clustering methods have two severe drawbacks for this purpose. First, spatial clustering methods focus on the specific characteristics of distributions in 2- or 3-D space, while general-purpose high-dimensional clustering methods have limited power in recognizing spatial patterns that involve neighbors. Second, clustering methods in general are not geared toward allowing the human-computer interaction needed to effectively tease-out complex patterns. In the current paper, an approach is proposed to open up the ldquoblack boxrdquo of the clustering process for easy understanding, steering, focusing and interpretation, and thus to support an effective exploration of large and high dimensional geographic data. The proposed approach involves building a hierarchical spatial cluster structure within the high-dimensional feature space, and using this combined space for discovering multi-dimensional (combined spatial and non-spatial) patterns with efficient computational clustering methods and highly interactive visualization techniques. More specifically, this includes the integration of: (1) a hierarchical spatial clustering method to generate a 1-D spatial cluster ordering that preserves the hierarchical cluster structure, and (2) a density- and grid-based technique to effectively support the interactive identification of interesting subspaces and subsequent searching for clusters in each subspace. The implementation of the proposed approach is in a fully open and interactive manner supported by various visualization techniques.
Keywords:geographic knowledge discovery  spatial clustering and ordering  hierarchical subspace clustering  visualization and interaction
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号