首页 | 本学科首页   官方微博 | 高级检索  
     

基于人工免疫网络的动态聚类算法
引用本文:钟将,吴中福,吴开贵,欧灵. 基于人工免疫网络的动态聚类算法[J]. 电子学报, 2004, 32(8): 1268-1272
作者姓名:钟将  吴中福  吴开贵  欧灵
作者单位:重庆大学计算机学院,重庆 400044
基金项目:国家自然科学基金 (No 60 0 730 4 7)
摘    要:聚类分析的两个基本任务是分析数据集中簇的数量以及这些簇的位置.大多数的聚类方法通常只关注后一个问题.为了在聚类数不确定的情况下实现聚类分析,本文提出了一种新的结合人工免疫网络和遗传算法的动态聚类算法—DCBIG.新算法主要包含两个阶段:先使用人工免疫网络算法获得聚类可行解,然后使用遗传算法依据聚类可行解实现动态聚类.本文对获得聚类可行解的条件和概率进行了分析.仿真实验结果表明与现有方法相比,新方法具有更高的收敛概率和收敛速度.

关 键 词:动态聚类  免疫网络  聚类可行解  收敛  
文章编号:0372-2112(2004)08-1268-05
收稿时间:2003-07-20

A Novel Dynamic Clustering Algorithm Based on Artificial Immune Network
ZHONG Jiang,WU Zhong-fu,WU Kai-gui,OU Ling. A Novel Dynamic Clustering Algorithm Based on Artificial Immune Network[J]. Acta Electronica Sinica, 2004, 32(8): 1268-1272
Authors:ZHONG Jiang  WU Zhong-fu  WU Kai-gui  OU Ling
Affiliation:College of Computer Science and Engineering,Chongqing University,Chongqing 400044,China
Abstract:Cluster analysis aims at answering two main questions:how many clusters there are in the data set and where they are located.Usually,the traditional clustering algorithms only focus on the last problem.In order to solve the two problems at the same time,this paper proposes a novel dynamic clustering algorithm called DCBIG,which is based on the immune network and genetic algorithm.The algorithm includes two phases,begins by running immune network algorithm to find a feasible solution,and then employs genetic algorithm to search the optimum number of clusters and the location of each cluster according to the feasible solution.Also,the probabilities and the conditions to acquire a feasible solution through immune network algorithm are discussed in this paper.Experimental results show that new algorithm is characterized by higher convergent probability and convergent speed.
Keywords:dynamic clustering  immune network  clustering feasible solution  convergence
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电子学报》浏览原始摘要信息
点击此处可从《电子学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号