首页 | 本学科首页   官方微博 | 高级检索  
     


Learnt inverse kinematics for animation synthesis
Authors:Eng-Jon Ong  Adrian Hilton
Affiliation:aCentre for Vision, Speech and Signal Processing, SEPS, University of Surrey, Guildford GU2 7XH, UK
Abstract:Existing work on animation synthesis can be roughly split into two approaches, those that combine segments of motion-capture data, and those that perform inverse kinematics. In this paper, we present a method for performing animation synthesis of an articulated object (e.g. human body and a dog) from a minimal set of body joint positions, following the approach of inverse kinematics. We tackle this problem from a learning perspective. Firstly, we address the need for knowledge on the physical constraints of the articulated body, so as to avoid the generation of a physically impossible poses. A common solution is to heuristically specify the kinematic constraints for the skeleton model. In this paper however, the physical constraints of the articulated body are represented using a hierarchical cluster model learnt from a motion capture database. Additionally, we shall show that the learnt model automatically captures the correlation between different joints through simultaneous modelling of their angles. We then show how this model can be utilised to perform inverse kinematics in a simple and efficient manner. Crucially, we describe how IK is carried out from a minimal set of end-effector positions. Following this, we show how this “learnt inverse kinematics” framework can be used to perform animation syntheses on different types of articulated structures. To this end, the results presented include the retargeting of a flat surface walking animation to various uneven terrains to demonstrate the synthesis of a full human body motion from the positions of only the hands, feet and torso. Additionally, we show how the same method can be applied to the animation synthesis of a dog using only its feet and torso positions.
Keywords:Learnt inverse kinematics   Animation synthesis   Hierarchical clustering
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号