首页 | 本学科首页   官方微博 | 高级检索  
     


Snake terrestrial locomotion synthesis in 3D virtual environments
Authors:Costas Panagiotakis  Georgios Tziritas
Affiliation:(1) Computer Science Department, University of Crete, P.O. Box 2208, Heraklion, Greece
Abstract:We present a method for a 3D snake model construction and terrestrial snake locomotion synthesis in 3D virtual environments using image sequences. The snake skeleton is extracted and partitioned into equal segments using a new iterative algorithm for solving the equipartition problem. This method is applied to 3D model construction and at the motion analysis stage. Concerning the snake motion, the snake orientation is controlled by a path planning method. An animation synthesis algorithm, based on a physical motion model and tracking data from image sequences, describes the snake’s velocity and skeleton shape transitions. Moreover, the proposed motion planning algorithm allows a large number of skeleton shapes, providing a general method for aperiodic motion sequences synthesis in any motion graph. Finally, the snake locomotion is adapted to the 3D local ground, while its behavior can be easily controlled by the model parameters yielding the appropriate realistic animations.
Keywords:Snake motion modeling  Graph exploration  Snake animation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号