首页 | 本学科首页   官方微博 | 高级检索  
     


A proof of the Gilbert-Pollak conjecture on the Steiner ratio
Authors:D. -Z. Du  F. K. Hwang
Affiliation:1. Department of Computer Science, Princeton University, USA
2. DIMACS (Center for Discrete Mathematics and Theoretical Computer Science), a National Science Foundation Science and Technology Center, USA
3. Institute of Applied Mathematics, Academia Sinica, Beijing, China
4. AT&T Bell Laboratories, 07974, Murray Hill, NJ, USA
Abstract:LetP be a set ofn points on the euclidean plane. LetL s(P) andL m (P) denote the lengths of the Steiner minimum tree and the minimum spanning tree onP, respectively. In 1968, Gilbert and Pollak conjectured that for anyP,L s (P)≥(√3/2)L m (P). We provide a proof for their conjecture in this paper.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号