首页 | 本学科首页   官方微博 | 高级检索  
     


Buoyancy and wall conduction effects on forced convection of micropolar fluid flow along a vertical slender hollow circular cylinder
Authors:Cheng-Long Chang  
Affiliation:aDepartment of Mechanical Engineering, Hsiuping Institute of Technology, Dali, Taichung 41280, Taiwan, ROC
Abstract:This paper presents a numerical analysis of the flow and heat transfer characteristics of forced convection in a micropolar fluid flowing along a vertical slender hollow circular cylinder with wall conduction and buoyancy effects. The non-linear formulation governing equations and their associated boundary conditions are solved using the cubic spline collocation method and the finite difference scheme with a local non-similar transformation. This study investigates the effects of the conjugate heat transfer parameter, the Richardson number, the micropolar parameter, and the Prandtl number on the flow and the thermal fields. The effect of wall conduction on the thermal and the flow fields are found to be more pronounced in a system with a greater buoyancy effect or Prandtl number but is less sensitive with a greater micropolar material parameter. Compared to the case of pure forced convection, buoyancy effect is found to result in a lower interfacial temperature but higher the local heat transfer rate and the skin friction factor. Finally, compared to Newtonian fluid, an increase in the interfacial temperature, a reduction in the skin friction factor, and a reduction in the local heat transfer rate are identified in the current micropolar fluid case.
Keywords:Conjugate heat transfer parameter   Buoyancy effect   Micropolar fluid   Slender cylinder
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号