首页 | 本学科首页   官方微博 | 高级检索  
     

硅基微腔光子学测温技术研究进展
引用本文:潘奕捷,王瑾,张诚,屈继峰,段宇宁.硅基微腔光子学测温技术研究进展[J].计测技术,2022(6).
作者姓名:潘奕捷  王瑾  张诚  屈继峰  段宇宁
作者单位:1.中国计量科学研究院,北京 100029
2.北京理工大学 光电学院,北京 100081
摘    要:硅基微腔光子学测温包括基于热折变效应的协议温度测量以及基于光机谐振原理的热力学温度测量,国际温度咨询委员会(CCT)在2018-2027战略规划中,将硅基微腔光子学测温确定为接触测温新兴技术的主要发展方向。本文简要介绍上述两种测温理论机理,综述近年来美国国家标准与技术研究院(NIST)、欧洲计量合作组织(EURAMET)等发达国家计量院与计量组织在上述领域的研究进展,以及来自于学术界的探索性研究内容;最后介绍中国计量科学研究院在毫开尔文(mK)级微腔光子温度计制备与测试、基于法诺共振的亚mK级分辨力提升方法、基于氮化硅微腔的亚mK级自热温升抑制等研究进展。

关 键 词:温度计量  光学微腔  光子学测温  热折变效应  光机械

Research progress of silicon microcavity photonic temperature measurement
Abstract:Silicon microcavity photonic temperature measurement includes International Temperature Scale (ITS) temperature measurement based on the thermo-refractive effect and thermodynamic temperature sensing based on optomechanical principle. In the 2018-2027 development strategy of the Consultive Committee of Temperature (CCT), silicon microcavity photonic thermometry was designated as the first priority within the emerging contact temperature measurement techniques. This paper briefly introduces the mechanisms of the two photonic temperature measurement techniques, and summarizes the research progress of metrology institutes and metrology organizations such as NIST in the United States and EURAMET in Europe in the above fields in recent years, as well as the exploratory research achievement from academia. Finally, the latest research results of the National Institute of Metrology, China are introduced including the fabrication and testing of self-developed photonic thermometers with a milli-Kelvin (mK) level resolution, the sub-mK level resolution enhancement approach by means of the Fano resonance, and the sub-mK level self-heating suppression by Si3N4 microcavity.
Keywords:temperature metrology  optical microcavity  photonic thermometry  thermo-refractive effect  optomechanical
点击此处可从《计测技术》浏览原始摘要信息
点击此处可从《计测技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号