首页 | 本学科首页   官方微博 | 高级检索  
     

基于交叉算法的神经网络模拟电路特性分析
引用本文:袁海英,陈光(礻禹),谢永乐. 基于交叉算法的神经网络模拟电路特性分析[J]. 电子测量与仪器学报, 2007, 21(3): 5-8
作者姓名:袁海英  陈光(礻禹)  谢永乐
作者单位:电子科技大学自动化工程学院,成都,610054;电子科技大学自动化工程学院,成都,610054;电子科技大学自动化工程学院,成都,610054
基金项目:国家自然科学基金,高等学校博士学科点专项科研项目
摘    要:本文利用基于交叉算法的神经网络训练方法对模拟电路进行性能分析.前馈神经网络的监督学习通常是一种从上到下(top-down)的学习模式,具有单隐层结构的前馈神经网络也可采用从下到上(bottom-up)学习模式的非监督学习算法来进行,基于交叉算法的复值神经网络训练方法突破以往算法的各种局限,其学习过程将从下到上的非监督学习和从上到下的监督学习相结合,网络性能更优.模拟电路特性分析的仿真研究表明该算法行之有效.

关 键 词:前馈神经网络  交叉算法  模拟电路  特性分析
修稿时间:2006-10-01

Characteristic Analysis in Analog Circuit Based on Neural Network with Intercross Arithmetic
Yuan Haiying,Chen Guangju,Xie Yongle. Characteristic Analysis in Analog Circuit Based on Neural Network with Intercross Arithmetic[J]. Journal of Electronic Measurement and Instrument, 2007, 21(3): 5-8
Authors:Yuan Haiying  Chen Guangju  Xie Yongle
Affiliation:School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 610054 China
Abstract:The characteristic analysis in analog circuit is realized using neural network method with intercross arithmetic here. The supervised learning arithmetic in forward feedback neural network is always a top-down mode; the forward feedback neural network with single hide layer structure can also be carried out by non-supervised learning arithmetic ; it is a bottom-up mode. The training method of the neural network based on intercross arithmetic is presented in this paper. It is a learning process that combines non-supervised learning with bottom-up mode and the supervised learning with top-down mode together effectively ; it breaks through all kinds of limits of classical arithmetic. A characteristic analysis illustration in analog circuit validates the learning arithmetic.
Keywords:forward neural network   intercross arithmetic   analog circuit   characteristic analysis.
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号