首页 | 本学科首页   官方微博 | 高级检索  
     

带有时滞的随机区间Hopfield神经网络的指数稳定性
引用本文:张玉民,沈 轶,廖晓昕. 带有时滞的随机区间Hopfield神经网络的指数稳定性[J]. 控制理论与应用, 2003, 20(5): 746-748
作者姓名:张玉民  沈 轶  廖晓昕
作者单位:华中科技大学,控制科学与工程系,湖北,武汉,430074;华中科技大学,控制科学与工程系,湖北,武汉,430074;华中科技大学,控制科学与工程系,湖北,武汉,430074
基金项目:supportedbytheNationalNaturalScienceFoundationofChina (60 0 740 0 8,60 2 740 0 7,60 2 740 2 6),theNationalDoctoralFoundationofChina (2 0 0 10 4870 0 5 ) .
摘    要:讨论了带有可变时滞的随机区间Hopfield神经网络的指数稳定性, 利用It^o公式和Lyapunov函数, 得到了几个关于其指数稳定时滞无关和时滞相关的充分性条件, 推广了现有文献中关于定常时滞随机神经网络及其确定形式的许多结果.

关 键 词:随机区间时滞Hopfield神经网络  布朗运动  Ito公式  Lyapunov函数  鲁棒稳定性
收稿时间:2002-05-16
修稿时间:2003-03-18

Exponential stability for stochastic interval delayed Hopfield neural networks
ZHANG Yu-min,SHEN Yi and LIAO Xiao-xin. Exponential stability for stochastic interval delayed Hopfield neural networks[J]. Control Theory & Applications, 2003, 20(5): 746-748
Authors:ZHANG Yu-min  SHEN Yi  LIAO Xiao-xin
Affiliation:Department of Control Science & Engineering, Huazhong University of Science and Technology, Hubei Wuhan 430074,China;Department of Control Science & Engineering, Huazhong University of Science and Technology, Hubei Wuhan 430074,China;Department of Control Science & Engineering, Huazhong University of Science and Technology, Hubei Wuhan 430074,China
Abstract:A type of stochastic interval delayed Hopfield neural network had been studied. By using It formula and Lyapunov function, some new delay-dependent and delay-independent sufficient conditions of its global exponential stability had been given. All the results obtained were generalizations of some recent results reported in the literature for stochastic neural networks with constant delays or their certain cases with variable-delays.
Keywords:stochastic interval delayed Hopfield neural network   Brownian motion   It^o formula   Lyapunov function   robust stability
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《控制理论与应用》浏览原始摘要信息
点击此处可从《控制理论与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号