首页 | 本学科首页   官方微博 | 高级检索  
     

利用语义词典Web挖掘语言模型的无指导译文消歧
引用本文:刘鹏远,赵铁军. 利用语义词典Web挖掘语言模型的无指导译文消歧[J]. 软件学报, 2009, 20(5): 1292-1300. DOI: 10.3724/SP.J.1001.2009.03367
作者姓名:刘鹏远  赵铁军
作者单位:哈尔滨工业大学计算机科学与技术学院,黑龙江,哈尔滨,150001
基金项目:Supported by the National Natural Science Foundation of China under Grant No.60435020 (国家自然科学基金); the National High-Tech Research and Development Plan of China under Grant Nos.2006AA01Z150, 2006AA010108 (国家高技术研究发展计划(863))
摘    要:为了解决困扰词义及译文消歧的数据稀疏及知识获取问题,提出一种基于Web利用n-gram统计语言模型进行消歧的方法.在提出词汇语义与其n-gram语言模型存在对应关系假设的基础上,首先利用Hownet建立中文歧义词的英文译文与知网DEF的对应关系并得到该DEF下的词汇集合,然后通过搜索引擎在Web上搜索,并以此计算不同DEF中词汇n-gram出现的概率,然后进行消歧决策.在国际语义评测SemEval-2007中的Multilingual Chinese English Lexical Sample Task测试集上的测试表明,该方法的Pmar值为55.9%,比其上该任务参评最好的无指导系统性能高出12.8%.

关 键 词:词义消歧  无指导译文消歧  语言模型  Web挖掘  知识获取
收稿时间:2007-12-12
修稿时间:2008-04-15

Unsupervised Translation Disambiguation by Using Semantic Dictionary and Mining Language Model from Web
LIU Peng-Yuan and ZHAO Tie-Jun. Unsupervised Translation Disambiguation by Using Semantic Dictionary and Mining Language Model from Web[J]. Journal of Software, 2009, 20(5): 1292-1300. DOI: 10.3724/SP.J.1001.2009.03367
Authors:LIU Peng-Yuan and ZHAO Tie-Jun
Affiliation:Department of Computer Science and Technology;Harbin Institute of Technology;Harbin 150001;China
Abstract:In order to solve the problem of data sparseness and knowledge acquisition in translation disambiguation and WSD (word sense disambiguation), this paper introduces an unsupervised method, based on the n-gram language model and web mining. It is supposed that there exists a latent relationship between the word sense and n-gram language model. Based on this assumption, the mapping between the English translation of Chinese word and the DEF of Hownet is established and the word set is acquired. Then the probabilities of n-gram in the words set are calculated based on the query results of a searching engine. The disambiguation is performed via these probabilities. This method is evaluated on a gold standard Multilingual Chinese English Lexical Sample Task dataset. Experimental results show that the model gets the state-of-the-art results (Pmar=55.9%) and outperforms 12.8% on the best system in SemEval-2007.
Keywords:WSD (word sense disambiguation)   unsupervised translation disambiguation   language model   Web mining   knowledge acquisition
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《软件学报》浏览原始摘要信息
点击此处可从《软件学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号