首页 | 本学科首页   官方微博 | 高级检索  
     


Performance improvement of direct carbon fuel cell by introducing catalytic gasification process
Authors:Chen Li  Ningsheng Cai
Affiliation:a Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Tsinghua Yuan, Haidian District, Beijing 100084, China
b Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
Abstract:In this paper, the effects of catalytic gasification on the solid oxide electrolyte DCFC (direct carbon fuel cell) performance are experimentally investigated and analyzed using K, Ca, Ni as catalyst in carbon black and controlling the temperatures of cell and carbon black at 750 °C and 700-1000 °C, respectively. The average power densities are 976, 1473 and 1543 W m−2 respectively for 900, 950 and 1000 °C pure carbon black gasification. Catalytic gasification improves the DCFC performance significantly. For the same performance of pure carbon black, the gasification temperatures decrease about 200, 130 and 150 °C with K, Ca and Ni additives, respectively. The catalytic effects for carbon black gasification with CO2 are: K > Ni > Ca. For typical identical temperature DCFC operating at 750 °C, the power densities of 0.7 V discharging are 1477, 1034 and 1123 W m−2 for the carbon black with K, Ca and Ni additives, respectively. It is possible to reduce the operation temperature of DCFC to the medium temperature range of solid oxide electrolyte (600-800 °C) by introducing catalytic gasification process.
Keywords:Direct carbon fuel cell  Catalytic gasification  Solid oxide electrolyte  Carbon  Performance
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号