首页 | 本学科首页   官方微博 | 高级检索  
     


A covalent link between the chromophore and the protein backbone of bacteriorhodopsin is not required for forming a photochemically active pigment analogous to the wild type
Authors:N Friedman  S Druckmann  J Lanyi  R Needleman  A Lewis  M Ottolenghi  M Sheves
Affiliation:Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel.
Abstract:Bacteriorhodopsin pigments lacking the retinal-Lys-216 covalent bond were prepared by reconstituting the K216G mutant protein with retinal alkylamine Schiff bases. The procedure follows the approach of Zhukovsky et al. Zhukovsky, E., Robinson, P., & Oprian, D. (1991) Science 251, 558-560] in the case of visual (rhodopsin) pigments. Reconstitution leads to a mixture of three pigments. One of them, bR(K216G)/566a, absorbs (pH = 6.9) at 566 nm. Its absorption is pH-dependent, exhibiting a purple to blue transition. The pigment's laser-induced photocycle patterns are similar to those of wild-type all-trans-bR. A second component, bR(K216G)/566b, exhibits an independent photocycle reminiscent of that of wild-type 13-cis-bR. A third pigment component, bR(K216G)/630, absorbs around 630 nm. Experiments in the presence of a pH dye indicator show that illumination of bR(K216G)/566 produces a detectable proton gradient. It is concluded that a covalent bond between the retinal chromophore and the protein backbone is not a prerequisite for the basic structure and photochemical features of bR or for its proton pump activity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号