首页 | 本学科首页   官方微博 | 高级检索  
     

脑干听觉诱发电位的子波变换提取技术
引用本文:温玉汉 卢战. 脑干听觉诱发电位的子波变换提取技术[J]. 数据采集与处理, 1997, 12(2): 91-95
作者姓名:温玉汉 卢战
作者单位:华南理工大学无线电与自动控制研究所
摘    要:概要地论述了诱发电位的主要特点及检测技术,以脑干听觉诱发电位为例,根据其时,频特性,把子波变换技术应用到BAEP的提取中,提出了BAEP的子波变换技术应用到BAEP的提取中,提出了BAEP的子波变换去噪算法;根据BAEP的信噪比较低的实际情况,提出了结合平均技术的改进算法,通过与传统的平均法比较,该方法可以大大减少检测时间和获得较高的信噪比及满意的波形。

关 键 词:信号检测 信号分析 子波变换 脑干听觉 诱发电位

The Initial Parameters Estimation of Hidden Markov Model in Speech Recognition
Ma Ming Zhang Jie Wang Jianyu Huang Zhitong [JB. The Initial Parameters Estimation of Hidden Markov Model in Speech Recognition[J]. Journal of Data Acquisition & Processing, 1997, 12(2): 91-95
Authors:Ma Ming Zhang Jie Wang Jianyu Huang Zhitong [JB
Abstract:The choice of initial parameters of hidden Markov model (HMM) is very important and much difficult, too. In general, there are two methods in solutions. One is to set the initial parameters of HMM to mean values or nonzero random values, the other method is segmental K means procedure. But the above methods may cause the Baum Welch algorithm converging to a partial optimum solution, or increase the amount of computation. In order to solve the above defaults, the authors firstly analyzed the relations between observation sequences and parameters of HMM on certain conditions. Then, the practicable estimation of initial parameters of HMM is given.
Keywords:speech recognition  speech signal  hidden Markov model  initial parameters estimation  
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号