首页 | 本学科首页   官方微博 | 高级检索  
     


Experimental characterization and multi-scale modeling of mixing in static mixers. Part 2. Effect of viscosity and scale-up
Authors:Christian Lindenberg
Affiliation:Institute of Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
Abstract:Static micro-mixers are used in precipitation processes to avoid mixing limitations. The mixing performance of these mixers, which are used in this study to mix two streams of different viscosity, is characterized using competitive-parallel chemical reactions and computational fluid dynamics (CFD). This work is an extension of a previous paper where mixing of fluids with equal viscosity has been studied Lindenberg, C., Schöll, J., Vicum, L., Brozio, J., Mazzotti, M., 2008. Experimental characterization and multi-scale modeling of mixing in static mixers. Chemical Engineering Science 63, 4135-4149]. It is found that the mixing performance in terms of reaction yield and mixing time decreases slightly with increasing viscosity ratio in a two jet vortex mixer (Roughton mixer). In the Y-mixer the trend is the same at low flow rates, but it is the opposite at large flow rates due to a symmetry breaking phenomenon. The Roughton mixer is scaled-up using the CFD model and a linear relationship between scale-up factor and mixing time is observed. Finally, it is shown that mixing times can be described satisfactorily as a function of velocity, jet diameter and viscosity.
Keywords:Mixing  CFD  Competitive chemical reactions  Static mixer  Y-mixer  Roughton mixer  Precipitation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号