首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传算法的中子屏蔽材料组分优化研究
引用本文:陈法国,李国栋,杨明明,韩毅,梁润成. 基于遗传算法的中子屏蔽材料组分优化研究[J]. 辐射防护, 2020, 40(1): 38-44
作者姓名:陈法国  李国栋  杨明明  韩毅  梁润成
作者单位:中国辐射防护研究院,山西 太原 030006
摘    要:基于快速非支配排序遗传算法NSGA-Ⅱ,开展了多目标屏蔽优化设计研究,建立了中子复合屏蔽材料组分的自动优化设计程序。以屏蔽剂量和材料密度最小化为目标,以聚乙烯、铅、硼、锂、铁、铝等材料均匀混合组成30 cm厚平板屏蔽结构为例,验证了优化算法程序的有效性。将基于遗传算法的屏蔽优化方法与设计人员的经验相结合,可更高效地实现多目标屏蔽优化设计。

关 键 词:遗传算法  多目标优化  中子屏蔽  材料组分
收稿时间:2019-04-22

Optimization research on neutron shielding material component based on genetic algorithm
CHEN Faguo,LI Guodong,YANG Mingming,HAN Yi,LIANG Runcheng. Optimization research on neutron shielding material component based on genetic algorithm[J]. Radiation Protection, 2020, 40(1): 38-44
Authors:CHEN Faguo  LI Guodong  YANG Mingming  HAN Yi  LIANG Runcheng
Affiliation:China Institute for Radiation Protection, Taiyuan 030006
Abstract:Based on the fast non-dominated sorting genetic algorithm NSGA-II, multi-objective optimization of shielding design was studied, and automatic optimization design code for composite neutron shielding material component was developed. Aiming at the minimum shielding dose and material density, the effectiveness of the code is demonstrated by an example of 30 cm thick slab shield, which is composed of polyethylene, lead, steel, aluminum, boron and lithium homogeneously. Combining the shielding optimization method based on genetic algorithm and the experience of designer, multi-objective optimization of shielding design can be achieved more efficiently.
Keywords:genetic algorithm  multi-objective optimization  neutron shielding  material component  
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《辐射防护》浏览原始摘要信息
点击此处可从《辐射防护》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号