首页 | 本学科首页   官方微博 | 高级检索  
     


Metabolism of 1,2-(1-14C) dipalmitoyl phosphatidylcholine in the developing brain
Authors:G. A. Dhopeshwarkar  Carole Subramanian  James F. Mead
Affiliation:(1) Laboratory of Nuclear Medicine and Radiation Biology, University of California, 900 Veteran Ave, 90024 Los Angeles, California;(2) Department of Biological Chemistry, School of Medicine, University of California, 90024 Los Angeles, California
Abstract:Thirteen-day-old rats were divided into two groups; one group received 1,2-(1-14C) dipalmitoyl phosphatidylcholine and the other 1-14C palmitic acid in the form of an intraperitoneal injection. One half of the total number of rats in each group was sacrificed 24 hr after injection, and the other half was allowed to survive for 17 days after the injection. Radioactivity incorporated into brain and liver total lipids and into individiual polar lipid components of the brain was determined at both intervals. Phosphatidylcholine was isolated and partially deacylated with phospholipase A2 fromCrotalus Admanteus venom. The ratio of radioactivity FA 2/FA 1 (fatty acid attached to 2 and 1 carbon of the glycerol moiety) 24 hr after the injection was 8.3, when the tracer was radioactive phosphatidylcholine, compared to only 0.7 when radioactive palmitate was injected. From this different labeling ratio and different pattern of labeling the polar lipid components, it was concluded that the radioactive phosphatidylcholine was not deacylated completely before being taken up directly into the brain. Possibilities are discussed to show that the observed radioactive ratio could result from direct uptake of intact phosphatidylcholine, with little or no restriction from the blood brain barrier system, followed by partial degradation by phospholipase A1 in the brain itself. Presented in part at the AOCS Meeting, New Orleans, April 1973.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号