首页 | 本学科首页   官方微博 | 高级检索  
     


Coalition theory based task scheduling algorithm using DLFC-NN model
Authors:Ashis Kumar Mishra  Subasish Mohapatra  Pradip Kumar Sahu
Affiliation:1. Department of Computer Science and Engineering, Biju Patnaik University of Technology, Rourkela, Odisha, India;2. Department of Computer Science and Engineering, Bhubaneshwar, Odisha, India;3. Department of Information Technology, Veer Surendra Sai University of Technology, Burla, Odisha, India
Abstract:Resource management and job scheduling are essential in today's cloud computing world. Due to task scheduling and users' diverse submission of large-scale requests, co-located VM instances negatively impacted the performance of leased VM instances. This workload further led to resource rivalry across co-located VMs. In order to address the aforementioned problems, numerous strategies have been presented, however, they fail to take the asynchronous nature of the cloud environment into account. To address this issue, a novel “CTA using DLFC-NN model” is proposed. This proposed approach combines the coalition theory and DLFC-NN techniques by including IRT-OPTICS for task size clustering, digital metrology based on ionized information (DMBII) for defect detection in virtue machines (VM), and the dynamic levy flight hamster optimization algorithm for processing time optimization of the clusters. However, the implementation of task scheduling in an online environment is limited by a number of presumptions or oversimplifications made by current scheduling systems. As a result, a unique coalition theory is applied to efficiently schedule activities. In addition, the DLFC-NN model is used to reduce resource consumption, span time, and be highly accurate and energy-efficient when working on both online and offline jobs. Nevertheless, while optimizing the clusters' overall execution time, earlier approaches only decreased the make-span time for task scheduling. However, the DLFC-NN model solves the computation problem by using a fully weighted bipartite graph and the pseudo method to determine the fitness of the least makespan time. The enhanced methodology used in this study reduces the scheduling cost and minimizes job completion times according to different task counts when compared to the existing techniques.
Keywords:asynchronous nature  completion time  makespan time  resource allocation optimization algorithm  task scheduling  virtual machine
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号