首页 | 本学科首页   官方微博 | 高级检索  
     


A Deterministic Construction of Normal Bases With Complexity O(n3 + n log n log(log n) log q)
Affiliation:AAECC/IRIT, University P. Sabatier, 118 route de Narbonne, 31062 Toulouse Cédex, France
Abstract:Constructing normal bases of GF(qn) over GF (q) can be done by probabilistic methods as well as deterministic ones. In the following paper we consider only deterministic constructions. As far as we know, the best complexity for probabilistic algorithms is O(n2 log4n log2 (log n) + n log n log (log n) log q ) (see von zur Gathen and Shoup, 1992). For deterministic constructions, some prior ones, e.g. Lueneburg (1986), do not use the factorization of Xn - 1 over GF(q). As analysed by Bach, Driscoll and Shallit (1993), the best complexity (from Lueneburg, 1986) is O(n3 log n log(log n) + n2 log n log(log n) log q). For other deterministic constructions, which need such a factorization, the best complexities are O(n3,376 + n2 log n log(log n) log q) (von zur Gathen and Giesbrecht, 1990), or O(n3 log q); see Augot and Camion (1993). Here we propose a new deterministic construction that does not require the factorization of Xn - 1. Its complexity is reduced to O (n3 + n log n log(log n) log q ).
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号