首页 | 本学科首页   官方微博 | 高级检索  
     


Simulations on atomic-scale friction between self-assembled monolayers: Phononic energy dissipation
Authors:Hui Wang  Yuan-Zhong Hu  Tao Zhang
Affiliation:aState Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
Abstract:Atomic-scale friction between self-assembled monolayers (SAMs) on Au (1 1 1) has been studied through molecular dynamics simulations, with emphasis on the mechanism of energy dissipation. Results show that the shear stress and chain angle on commensurate SAMs exhibit a clean periodic pattern and atomic stick–slip friction, which manifests a gradual storage and sudden release of energy. Using a simple model of two atoms, analysis shows that the atomic stick–slip originates from the dynamic instability of molecule motion. Energy has been built up during the stick, followed by a sudden separation as the equilibrium becomes unstable, and most energy dissipates at the time of slip. Moreover, the simulations reveal that more energy is stored and released in commensurate sliding, resulting in much higher friction than that in incommensurate cases. The contradictory frictional behavior can be traced to the difference in the number and strength of the Van der Waals bonds, formed in the two types of contacts.
Keywords:Atomic-scale friction  Molecular dynamics simulations  Self-assembled monolayers  Energy dissipation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号