Abstract: | This work assessed the performance of a single‐chamber microbial fuel cell (MFC) with various substrates. Primary settled domestic wastewaters were used to simulate wastewaters of high biodegradability; while phenol‐based wastewaters and benzene‐based wastewaters were used to simulate wastewaters of low biodegradability. Experiments were performed at initial pH values of 6, 7 and 8. The maximum voltage production, power density and removal of substrate were obtained using primary settled domestic wastewater, whereas the lowest values were obtained using phenol‐based wastewater. The maximum chemical oxygen demand removal efficiency, phenol removal efficiency and benzene removal efficiency were 80.8, 63.3 and 77.8%, respectively. The performance of the MFC was enhanced by increasing the influent pH. The lowest coulombic efficiencies were obtained from phenol‐based wastewater and benzene‐based wastewater, which indicated that electrogenic bacteria were not the primary microorganisms responsible for the biodegradation of low biodegradable wastewater. |