摘 要: | 针对利用机械振动信号进行设备故障诊断和状态监测过程中,存在采样数据量多、存储容量大、传输带宽高和信号重构精度低等问题,提出一种稀疏度拟合的自适应机械振动信号压缩感知方法。首先,对机械振动信号进行多尺度小波包变换,再将小波包系数按一定阈值进行置零处理并求取其稀疏度;然后,采用迭代方法求取各稀疏度下满足重构信号精度条件的最低采样率,并对信号的稀疏度和采样率采用最小二乘法进行拟合,消除信号测量误差,求取最佳信号采样率;最后,采用K-奇异值分解算法构造与各信号块相适应的过完备字典,并利用正交匹配追踪算法实现信号重构。实验证明,与传统压缩算法相比较,该算法的信号压缩率和重构精度均得到较大提高。
|