摘 要: | 高炉铁水硅含量预测对调控炉温和稳定炉况具有重要作用。基于粗糙集理论与神经网络模型对铁水硅含量进行预测。采用粗糙集理论对输入参数进行约简,得到优化的输入集,结合BP(back propagation)神经网络实现高炉硅含量的预测。同时,针对炉况波动较大情况下神经网络模型预测误差大的问题,建立波动知识库,利用kNN(k-Nearest Neighbor)算法匹配识别波动炉况,对预测结果进行补偿。以国内某钢铁厂实际高炉生产数据进行验证,该方法在预测误差为±0.1%以内时预测命中率达到91.74%,可为高炉操作者判断炉况提供参考。
|