首页 | 本学科首页   官方微博 | 高级检索  
     


Two-dimensional numerical simulation of single bubble rising behavior in liquid metal using moving particle semi-implicit method
Affiliation:1. State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China;2. Department of Systems Innovation, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;1. Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;2. School of Aeronautics and Astronautics, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang 310027, China
Abstract:Gas-lift pump in liquid metal cooling fast reactor (LMFR) is an innovative conceptual design to enhance the natural circulation ability of reactor core. The two phase flow characteristics of gas–liquid metal make significant improvement of the natural circulation capacity and reactor safety. It is important to study bubble flow in liquid metal. In present study, the rising behaviors of a single nitrogen bubble in 5 kinds of common stagnant liquid metals (lead bismuth alloy (LBE), liquid kalium (K), sodium (Na), potassium sodium alloy (Na–K) and lithium lead alloy (Li–Pb)) and in flowing lead bismuth alloy have been numerically simulated using two-dimensional moving particle semi-implicit (MPS) method. The whole bubble rising process in liquid was captured. The bubble shape, rising velocity and aspect ratio during rising process of single nitrogen bubble were studied. The computational results show that, in the stagnant liquid metals, the bubble rising shape can be described by the Grace's diagram, the terminal velocity is not beyond 0.3 m/s, the terminal aspect ratio is between 0.5 and 0.6. In the flowing lead bismuth alloy, as the liquid velocity increases, both the bubble aspect ratio and terminal velocity increase as well. This work is the fundamental research of two phase flow and will be important to the study of the natural circulation capability of Accelerator Driven System (ADS) by using gas-lift pump.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号