摘 要: | 老化导致的电池组性能衰退与电池组电荷吞吐能力密切相关,对电池组性能衰退参数的快速精确辨识对提高电池组的服役寿命预测有效性至关重要。然而,既有的电池组性能衰退参数辨识方法仍然存在对大种群规模和高迭代次数的显著依赖,不利于提高电池组性能衰退模型的在线辨识更新适用性。针对此,本文提出了一种基于自适应协同引导的电池组性能衰退参数辨识方法。该方法首先基于自适应协同策略,综合考虑种群差异度和种群适应度的折中,实现种群个体对参数搜索空间的初期全局分布;在此基础上,基于精英引导策略,使种群中的个体在全局精英个体周围局部搜索,实现后期快速收敛至全局最优解。基于实测数据验证的统计结果表明,本文提出方法针对半经验容量衰退模型和内阻增量模型,在小种群规模下的参数辨识效率和精度均得到显著提升,分别在0.6 s和1.1 s内达到0.237%和0.37%的适应度终值,相对于蚁狮算法在辨识效率提高81.35%的同时适应度均值降低了3.8%,相对于灰狼算法在辨识效率提高17.14%的同时最终适应度均值降低了22.11%。
|